

Proportion (Part 1)

▶ Definition

Two numbers are said directly proportional if a number increases, the other number also increases at the same rate.

Example: I give private lessons and charge \$10 per hour. How much does I get paid if I teach 5 hours? 123

▶ Definition

Two numbers are said directly proportional if a number increases, the other number also increases at the same rate.

Example: I give private lessons and charge \$10 per hour. How much does I get paid if I teach 5 hours? 123

Definition

I give private lessons and charge \$10 per hour. How much does I get paid if I teach 5 hours?

> The rate of pay will be the same no matter how many hours she work.

If the number of hours the amount she's paid

at the same rate.

▶ Definition

I give private lessons and charge \$10 per hour. How much does I get paid if I teach 5 hours?

Then,
$$\frac{10}{1} = \frac{t}{5}$$

 $t = 5 \times 10 = 50$ \$

Algebraic relation

In general, x and y are directly proportional if $\frac{y}{x} = k$ constant i.e. y = kx k is called constant of proportionality

► Table of proportionality

	x	1	2	3	4	5	10
×10	у	10	20	30	40	50	100

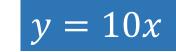
$$y = 10x$$

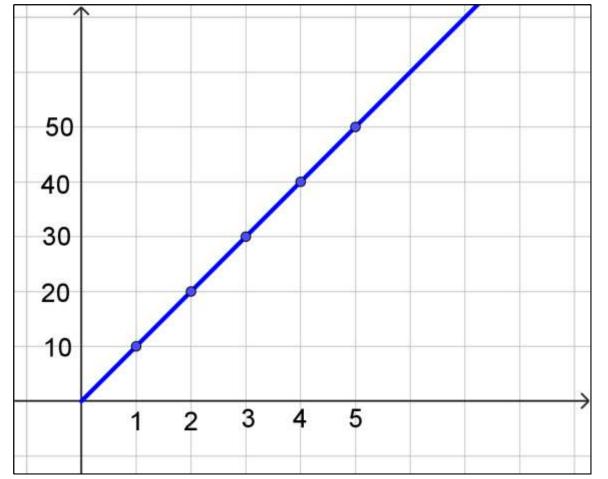
x	5	8	12
y	30	48	72

$$\frac{30}{5} = 6$$
 ; $\frac{48}{8} = 6$; $\frac{72}{12} = 6$

So table of proportionality

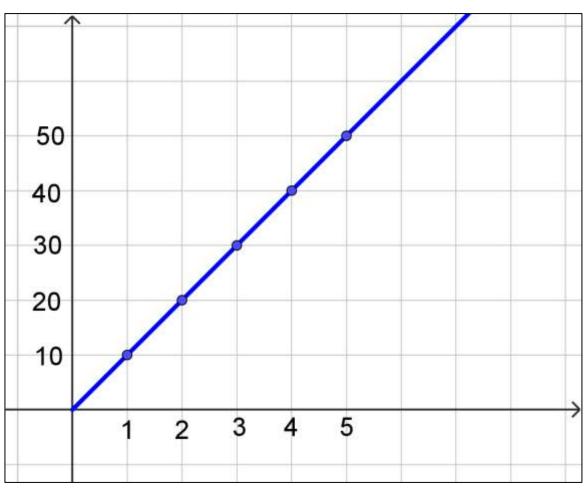
$$y = 6x$$


$$\frac{24}{4} = 6$$
; $\frac{42}{7} = 6$; $\frac{50}{10} = 5 \neq 6$


So not table of proportionality

► Graphical representation

x	1	2	3	4	5
у	10	20	30	40	50


Straight line that passes through the origin

► Graphical representation

In general, we can represent a proportional relation of the form y = ax in a system of axes by a line passing through the origin and the point (1; a).

The relation y = ax is called linear relation

The orbit of an artificial satellite is 10 000 km above the earth's surface. This satellite completes one turn in 2 days. Taking the radius of Earth to be 6400 km approximately:

a) What is the distance travelled by the satellite in one turn?

The distance is
$$D = 2\pi(6400 + 10000)$$

= 102992 km

The orbit of an artificial satellite is 10 000 km above the earth's surface. This satellite completes one turn in 2 days. Taking the radius of Earth to be 6400 km approximately:

b) What is the distance travelled by the satellite in one day?

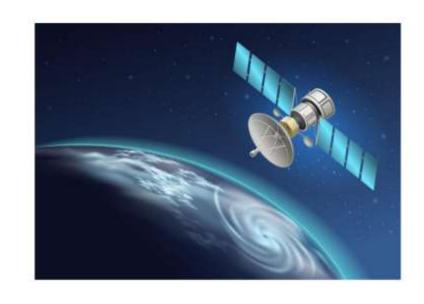
$$102992 \div 2 = 51496 \text{ km}$$

The orbit of an artificial satellite is 10 000 km above the earth's surface. This satellite completes one turn in 2 days. Taking the radius of Earth to be 6400 km approximately:

c) How long does it take the satellite to complete 10 turns?

Turns	1	10
Days	2	\boldsymbol{x}

$$x = 2 \times 10 = 20$$
 days



The orbit of an artificial satellite is 10 000 km above the earth's surface. This satellite completes one turn in 2 days. Taking the radius of Earth to be 6400 km approximately:

d) How many turns does it make in 18 days?

Turns	1	x
Days	2	18

$$x = \frac{1 \times 18}{2} = 9 \text{ turns}$$

Three numbers a, b and c are directly proportional to 2,3 and 5. find a, b and c knowing that a + b + c = 30

$$\frac{a}{2} = \frac{b}{3} = \frac{c}{5} = k$$

$$\frac{a}{2} = k \quad ; \quad a = 2k$$

$$\frac{b}{3} = k$$
 ; $b = 3k$

$$\frac{c}{5} = k \quad ; \quad c = 5k$$

$$a + b + c = 30$$

$$2k + 3k + 5k = 30$$

$$10k = 30$$

$$k = \frac{30}{10} = 3$$

$$a = 6$$
 ; $b = 9$; $c = 15$